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Abstract 

We describe an open-source blocks-based programming library in Snap! [Harvey and Mönig, 
2010] that enables non-experts to construct machine learning applications. The library includes 
blocks for creating models, defining the training and validation datasets, training, and prediction. 
We present several sample applications: approximating mathematical functions from examples, 
attempting to predict the number of influenza infections given historical weather data, predicting 
ratings of generated images, naming random colours, question answering, and learning to win 
when playing Tic Tac Toe. 
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Introduction 

This work builds upon the work of Kahn and Winters [Kahn and Winters, 2018] who developed a 
visual programming library designed to be used by high school students in building AI applications. 
They first created Snap! blocks that connect to AI cloud services for speech and image recognition 
as well as speech synthesis [Kahn and Winters, 2017]. They then provided block-based interfaces 
to several pre-trained deep learning models for services such as transfer learning, pose detection, 
style transfer, and image labelling. Here we present new additions to this Snap! library that support 
the definition of the architectures of deep learning models, their loss functions, their optimization 
methods, training parameters, and obtaining predictions [eCraft2Learn, 2020a]. In addition to the 
library itself, there are learning resources including interactive guides and sample projects 

Motivations 

In the last decade machine learning systems have demonstrated very impressive capabilities 
including image recognition, translation, autonomous driving, speech recognition, interpretation of 
medical imagery, transcription, recommendation generation, robot control, game playing, and 
much more. It is likely to continue greatly affecting nearly every aspect of modern life. Students 
who experience in a hands-on manner the possibilities, strengths, and weaknesses of this 
technology are likely to obtain a deeper understanding than those who simply study the 
technology. This viewpoint reflects on Dewey’s (1938) ‘learning by doing’ theory, which 
emphasises the value of experience and engagement. While we expect a small fraction would go 

mailto:toontalk@gmail.com


header – do not use it, it will be added by us 

2 

do NOT use any Footer – it will be added by us later  

on to become AI researchers or engineers, we expect the rest will be better prepared to contribute, 
in an informed manner, to a society rapidly changing due to the impact of AI. Such students are 
likely to be better equipped to deal with the social, economic, and ethical issues that are arising 
from the use of machine learning. 

We aim to provide high-school and non-computer science undergraduate students with limited 
programming abilities with tools for acquiring experiences designing, training, testing, and using 
deep machine learning models. We believe that our reliance upon a blocks-based language has 
many advantages over simply providing machine learning “wrappers” in JavaScript or Python. 
Students have fewer distractions such as syntax errors. Their cognitive load is less since they rely 
upon drag and drop of blocks instead of needing to remember the names of primitives. The blocks 
can be very readable without the usual cost involved in entering verbose instructions. The Snap! 
blocks provide an intuitive interface for asynchronous functions, a construct that many learners 
find difficult in textual languages. And a great number of students have familiarity with Scratch 
[Resnick et al. 2009] upon which Snap! was based. While these blocks have yet to be used in 
studies with our intended audience, we expect the kinds of success we have seen with other parts 
of our Snap! AI library [Kahn and Winters, 2018; Kahn et al, 2018; Loukatos et at, 2019] when we 
run trials of these machine learning blocks. 

The students who master our machine learning library can become empowered to build impressive 
apps that listen, see, predict, and more. This may motivate them to create innovative applications 
that match their interests and passions. Furthermore, in the process they may acquire the ability 
to reflect more deeply upon how they perceive, reason, and act. While deep learning neural nets 
are very different from brains, and how they perform and are structured is different from minds, 
they are still useful models of cognition. And perhaps students who acquire concepts for more 
effectively thinking about thinking may become better learners [Papert, 1980; Minsky, 2019; Kahn 
and Winters, 2020]. 

Related Research 

While there is a great deal of support for building deep neural networks in Python and JavaScript, 
we are focused on supporting learners lacking the technical skills to effectively use those 
resources. Mathematica’s Wolfram Language has a good deal of support for machine learning 
including learning resources aimed at middle and high school students [Wolfram, 2017a; Wolfram, 
2017b]. Our efforts differ from this in that we are building upon the ease-of-use and familiarity of 
blocks-based languages such as Scratch [Resnick et al., 2009] and Snap!. Furthermore, Snap! 
and our library are open-source and run in modern browsers without any installation requirements. 

There are other efforts to integrate machine learning with blocks-based languages including the 
Machine Learning for Kids website [Machine Learning for Kids, 2020] and the Cognimates project 
[Druga, 2018]. These systems, like the earlier work of Kahn and Winters, offer blocks that provide 
easy-to-use access to various AI cloud services. Unlike our current efforts, they do not provide a 
programmatic interface for constructing neural networks – the programmatic interfaces they 
provide are only for training and using neural nets. 

SnAIp is a project that aims to implement machine learning techniques in Snap! [Jatzla et al, 2019]. 
Unlike the Snap! blocks described in this paper, there are no black-box implementations in 
JavaScript, and no reliance upon complex APIs or cloud services. Enabling students to see how 
machine learning works in terms of blocks they are familiar with clearly has advantages. But 
technically it is very difficult to achieve the speed and scale that our blocks are capable of. Also 
our blocks provide access to very powerful APIs that would be a tremendous effort to fully replicate 
in Snap!. Ideally students should have access to both of these Snap! libraries so they can 
incorporate both transparent functionality and very capable functionality into their projects as 
appropriate. 

Google’s Teachable Machine [Google, 2020a] is a web page where users can train the system to 
classify images. The TensorFlow Playground [Google, 2020b] is a web page where one can 
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interactively define, train, and test a deep learning neural net. While wonderful learning resources, 
these systems do not provide a programmer interface. 

Snap! Blocks for AI Programming 

Snap! [Harvey and Mönig, 2010] is a blocks-based programming system that closely resembles 
the immensely popular Scratch programming system [Resnick et al. 2009]. Snap! is a much more 
powerful and expressive language than Scratch because of its thorough support for first-class 
functions and lists. Also, crucial to our efforts, new blocks can be defined either in Snap! or in 
JavaScript. All the blocks in our library are either defined in JavaScript or in terms of other blocks 
that ultimately rely upon our JavaScript-defined blocks. Note that this implies that we didn’t touch 
the source code of Snap! in implementing our extensions to Snap!. Student projects relying upon 
our blocks can be loaded into an ordinary Snap! web page. 

Snap! itself is implemented in JavaScript and hence can run in any modern web browser without 
the need for any extensions or plugins. (Note that the neural network blocks work in Chrome and 
Firefox but currently not in most other browsers.) Snap! is open source, well-documented, 
supported by an active community, and under continual further development. 

A blocks-based programming system has several advantages over text-based languages. 
Because blocks only click together if they are syntactically compatible, they eliminate the need to 
learn the syntax and, perhaps more importantly, eliminate the possibility of syntax errors or 
misspelled commands. A block can also be any mixture of text, input parameters, and icons, 
making it more readable. And blocks can easily be displayed in languages other than English. 

Blocks are organized into palettes that enable users to browse for appropriate blocks. 
Consequently, users needn’t memorize large numbers of language primitives. Well-designed 
learning activities could aid students to use blocks to reduce cognitive load during the learning 
process [Çakiroğlu et al., 2018]. While this relieves memory demands on users and facilitates the 
discovery of new functionality, it can be significantly slower than typing. Snap! addresses this by 
providing a keyboard method for searching for blocks. 

In Figure 1 the block for obtaining a prediction from a model will either call the “say” block with the 
prediction for the input (36) or else the “think” block will be called with the error message. Note 
that while this block expects success and errors continuations (also known as callbacks) it does 
so in a manner accessible by beginning programmers. 

 

Figure 1 - Prediction block with two embedded blocks 

Deep Neural Networks 

The neural networks that can be built with our library consist of a large number of connected 
artificial neurons. These neurons are loosely based upon biological neurons. The connections 
between neurons have weights that encode how much a neuron influences another neuron. In our 
work, as is typical for deep learning models, the neurons are organized into layers. The first layer 
receives the input and the last layer produces the output. The layers in-between, called “hidden 
layers”, typically produce successively higher-level features or interpretations of the data. Our 
library includes blocks for defining these layers and their connections. 

Neural nets work exclusively with numbers. To work around this for classification tasks, numbers 
are used to encode labels. E.g., if the sentiment of some text is either “negative”, “neutral”, or 
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“positive” this can be encoded as 0, 1, and 2. The training blocks accept text labels as outputs and 
converts them to “one-hot encodings” (vectors with one 1 and the rest 0). Image input is usually 
converted to a list of pixel values (either black and white (0 and 1), grayscale (0.0 to 1.0), or values 
for the red, green, and blue intensities). There are various schemes for converting words or 
sentences into a vector of numbers [Mikolov, 2013]. Other parts of our library provide blocks that 
can be used to convert images and text into vectors of numbers well-suited for machine learning. 

The weights associated with neurons are randomly initialized. These weights are updated as the 
model is trained on data. In supervised learning the data includes examples of outputs associated 
with inputs. During training the system adjusts the weights in an attempt to reduce the difference 
between its predictions and the desired outputs given in the datasets. Our Snap! library provides 
blocks for controlling many aspects of this training phase. 

Many of the concepts underlying neural nets are over fifty years old [Minsky & Papert, 1969] but 
only began leading to many thousands of useful systems in the last decade [Deepindex, 2020]. 
This recent success is usually attributable to much more powerful computation engines and the 
availability of large amounts of data. Computation engines typically exploit the graphical 
processing units (GPUs) found in most computers, tablets, and smartphones. These accelerators 
often decrease the time it takes to train a model or use it for predictions by a factor of one hundred 
or more. 

In our work we are able to exploit the speedups from using GPUs due to the arrival of 
TensorFlow.js [Smilkov, 2019]. This is an implementation of TensorFlow, a popular machine 
learning API, in JavaScript. It can access the GPU of a laptop, desktop computer, or phone using 
the WebGL interface [WebGL, 2019] that is supported by all modern web browsers. 

Training that relies upon big data can be a problem for students using our library. Students are 
likely to have problems acquiring millions of labelled images and importing them into a browser. 
And models built by professionals can take weeks to be trained on huge collections of images, 
even when using a large number of state-of-the-art GPUs or other accelerators. While many tasks 
are consequently impractical for students to attempt, fortunately, there remain many interesting 
tasks that don’t require huge datasets or computing resources. 

Most neural net applications run on servers that accept data from a client and respond with 
predictions. This enables the service providers to host their models on very powerful servers, 
sometimes on special hardware for accelerating machine learning. Many business models rely 
upon providing functionality via servers.  

There are drawbacks however. Many people are concerned about privacy concerns when using 
these services. Voice and video are often transferred to the servers. The cost of using a server is 
often an obstacle. Another disadvantage of running the models on servers is that applications 
cannot be as responsive as ones that run locally on the user’s devices. Also, applications that rely 
upon servers work only when the client has a fast and reliable network connection. 

By running on a user’s device in a web browser these drawbacks are avoided. One can download 
Snap! and our library and then run everything without an Internet connection. 

A Library of Machine Learning Blocks 

The Snap! library exists in two forms: (1) a set of blocks that can be imported into any Snap! 
instance or (2) a Snap! project that includes illustrative instances of the use of the blocks together 
with informative comments. One can simply click on any of the instances to run them. 

Typically, we provide at least two versions of any block: (1) the simplest usable version and (2) a 
full-featured version. 

Model Creation 

The simple block for creating a model is illustrated in Figure 2. It creates a model named ‘guess 
relation’ with a single input that is connected to 100 neurons. Each of those neurons is connected 
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in turn to 50 neurons that are connected to a single output neuron. When the system has finished 
creating the model the “say” block is run. 

 

Figure 2- A simple block for creating a model 

Figure 3 shows an example of the full-featured version of this block. It differs from the example in 
Figure 2 by specifying which optimization method and loss function are desired. Note that these 
are indicated by using pull-down menus for ease of use. Documentation of these methods and 
functions is provided via the help menu item and in the programming guide for greater detail. 
Examples of using this block for more difficult tasks are described later. 

 

Figure 3 - A full-featured block for creating a model 

Training 

Once a model is created one can begin training it. First one specifies the training dataset and 
optionally the validation dataset. A dataset consists of two Snap! lists with the same number of 
elements: the input and the output. The lists can consist of numbers, or lists of numbers (e.g. 
coordinates or red-green-blue intensity triples), or any number of levels of lists. The output can 
also contain text strings that are converted to numbers internally. The validation dataset, if 
provided, does not influence the weights during training and is used to provide predictions free of 
the risk of overfitting for evaluating the model. An alternative to providing a validation dataset is to 
request that a specified fraction of the training data be set aside for validation. 

In Figure 4 a dataset containing the first five positive integers is used as input and the output is 
computed using 2*n+1. (This is the machine learning analogue of the “Hello World” program – an 
extremely simple example.) This block can be used to either completely define the dataset or to 
provide data to be added to the current dataset. Datasets can be available for all models to use or 
be associated only with a specified model. 
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Figure 4 - Specifying the training dataset 

After specifying the dataset one can begin training. Figure 5 illustrates the simplest block for 
initiating training. It requests 50 iterations of the training step and then displays the statistics from 
the training as shown in Figure 6. 

 

Figure 5 - A simple block to initiate training 

 

Figure 6 - The resulting training statistics 

Figure 7 is an example of using the full-featured version of the training block. It specifies a learning 
rate of .001, that the data should be shuffled (to avoid any artefacts resulting from the order), that 
none of the data should be used for validation. It also responds to any errors that arise. 

 

Figure 7 - A full featured block for initiating training 

Prediction and Classification 

In Figure 8 we see a block requesting that the model predicts the output given 10 as the input. For 
this example, the “say” block will be passed a number close to 21 (i.e., 2*10+1). There is a version 
of this block that accepts a list of inputs and replies with a list of corresponding predictions. If the 
model has been trained to label the input, then the output is a list of pairings of labels and 
confidence scores. 
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Figure 8 - A block for getting predictions from a model 

A Graphical Interface for Creation, Training, and Prediction 

One of the challenges in creating good deep learning models is that some architectures (number 
of layers and number of neurons in each layer) can be quickly trained and produce accurate 
predictions, while others are difficult to train or produce poor results such as bad predictions or 
classifications. Deciding the size of the training data is challenging. Small datasets lead to fast 
training but only sometimes produce good predictions. Similarly, it is hard to know what are good 
values for hyper-parameters such as the learning rate, number of training iterations, loss function, 
and optimization method. 

One way we address this is to provide an optional graphical interface for setting all these 
parameters as illustrated in Figure 9. Students can use it to quickly try different parameters and 
teachers can use it to accompany a demonstration. 

 

Figure 9 - A graphical interface for exploring architectures and hyper-parameter values 

The graphical interface provides buttons for creating, training, and prediction. The training section 
provides real-time graphs of the training progress as seen in Figure 10. The x-axis is the number 
of training steps performed and the blue line shows the drop in the difference between predictions 
and the correct answers from the training data. The red line shows the difference for the validation 
dataset. 
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Figure 10 - a graph of the loss function during training 

Hyper-parameter optimization 

An alternative to tuning the model interactively is to let the computer search for good architectures 
and hyper-parameter values. While one can implement such a search in Snap! we also provide a 
block that interfaces to a TensorFlow.js hyper-parameter optimization library [Stoyanov, 2018]. 
Ambitious projects may find good settings much faster using this block than “manual” 
experimentation. We believe, however, that students can learn a good deal from some manual 
experimentation but it may become tedious for big projects. 

Figure 11 shows a block that starts a search exploring 50 different parameter settings. As each 
experiment is performed the parameter values are displayed. The best settings are captured when 
the search completes, and another block can be used to create and train a model using those 
settings. Boolean switches are used to indicate what hyper-parameters to explore. Finally, weights 
are provided to guide the search towards the desired trade-off between accuracy, training time, 
and model size/speed. 

The parameter search starts with the current settings and uses various heuristics to try values 
close to the currently most promising ones. The search can be customized in the graphical 
interface. 
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Figure 11 - Launching a search for good architectures and hyper-parameters 

Illustrative Projects 

Our library does not expose all the functionality of TensorFlow.js (which, while very powerful, 
supports only a subset of the full TensorFlow API). We decided to construct our library with only 
the most common and easiest to understand building blocks of deep learning programming. 
Despite this there is a wide variety of projects that it can support. Here we discuss several classes 
of projects that we developed, in increasing order of complexity. 

Approximating Mathematical Functions 

A pedagogically simple exercise using the deep learning blocks is to learn to approximate a 
mathematical function given sample input and output values. The early example of predicting 2x+1 
is so simple that many alternatives to deep learning can work as well. A more interesting example 
is to provide a list of numbers as output and the square of those numbers as input. Attempting this 
one can discover how the architecture of the model and number of training examples strongly 
influences how well it can “predict” the square root of test numbers. Furthermore, if trained on 
numbers, say, between 1 and 100, one can explore how well it can approximate the square root 
of 1000 or 1/100. Figure 12 displays the approximations for 2, 1, 49, 900, and 0.01. Applying deep 
learning to mathematical functions need not be constrained to functions of one argument nor 
functions that produce a single output value. 
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Figure 12 - A model's "predictions" of the square root of five test numbers 

(notice how poorly it estimates the square root 0.01) 

Some students may enjoy exploring the limits of this kind of technology. Can it reliably identify 
integers as prime or non-prime? Can it learn the prime factors of numbers? How well can it 
approximate transcendental functions? 

Discovering Real-world Data Relationships 

There are many freely available datasets that can be used as training data. Google Dataset Search 
is a convenient way to find them [Google, 2019c]. The example we explored starts with two 
datasets: the Global Historical Climatology Network-Daily Database [NOAA, 2019] and the Epi 
Data Surveillance Information from the World Health Organization [WHO, 2019]. The idea is that 
perhaps recent temperatures and precipitation can help predict subsequent occurrences of 
influenza. As is well-known, cases of influenza increase in the winter. Perhaps colder weather 
leads to more influenza in the following weeks. If there is such a relationship can deep learning 
discover it? 

The first step is to import data into Snap! directly as CSV and JSON files. Alternatively, one can 
import the contents of a data file as a string and programmatically parse it. Snap! has all the 
mathematical and list processing primitives needed to support “data wrangling”. We experimented 
with input data being temperatures from the previous week and the subsequent number of 
reported flu infections. The temperature data was normalized to be the ratio of the temperature to 
the average temperature for each location for each time of year. 

While this is an illustrative example of the kinds of explorations a typical high school student should 
be able to perform, we have yet to find any predictive value in knowing the previous week’s 
weather. Students can explore other relationships such as predictions from the previous several 
weeks. But negative results can be instructive as well. We remain optimistic that students will 
follow their interests in applying machine learning to data. There are also plenty of opportunities 
to tie these explorations to their other studies be it science, history, social studies, athletics, or 
language. Many machine learning projects can be developed to answer questions about 
epidemics such as covid-19. 

Learning to Win (at Tic Tac Toe) 

Deep learning has had several impressive accomplishments in game playing. DeepMind built a 
system that learned to play dozens of Atari video games [Mnih et al., 2013]. They later created 
AlphaZero that learned to play Go and Chess at world-class levels [Silver et al., 2017]. We have 
explored how students can do this themselves for simple games such as Tic Tac Toe. 

We provide a Snap! implementation of Tic Tac Toe since our focus is on using machine learning 
to discover winning ways of playing and we are ignoring the challenge of learning the rules of play. 
We frame the problem as one of predicting the probability of winning given a specific board. A 
board consists of 9 squares that can be X, O, or empty. One possible input to a neural net can be 
a vector of 9 instances of 0, 1, or 2. However, these numbers don’t work as well as using a vector 
of 27 instances of either 0 or 1. Each board square is either <0, 0, 1>, <0, 1, 0> or <1, 0, 0>.  
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As a game is played a list of successive board positions is recorded. When the game ends then 
the outcome is encoded for each board that occurred during the game: 0 for a tie, 1 for a win, and 
-1 for a loss. After training, a model can be used to make moves by considering the boards 
resulting from all possible next moves. It can then choose the move that is most likely to lead to a 
win or instead choose a random move based upon the probability of that move winning. 

It is not difficult to seed this process by collecting moves from games where a purely random 
player plays against another random player. After using this game play data as training data, one 
can begin to have a model play itself, a random player, another trained model (perhaps by a 
different student), or a human player. The moves from these games can then be used for further 
training. 

We also provide a web page where one can experiment interactively with deep learning for Tic 
Tac Toe. Unlike the Snap! Tic Tac Toe program, the webpage does not yet support human players. 
It does, however, facilitate large scale experimentation since it can play hundreds of games per 
minute. 

This approach to learning to win at a game relies upon the fact that the state of the game is known 
to all players and can be concisely and simply represented and that the number of possible moves 
on each step is small. Consequently, many popular games are too complex to learn to play them 
well in a manner similar to Tic Tac Toe. There are, however, several games that could use this 
approach. Connect the Dots and Nim are good examples. 

More sample projects 

We provide other examples of machine learning using the Snap! blocks. One generates random 
images and learns to rate them. Another asks the user to name randomly generated colours and 
then learns to predict the name of additional colours. Another project is a question answering 
system that can answer questions about the Snap! AI blocks library. 

Learning Resources 

For many students a library of deep learning programming blocks is not enough. They need 
tutorials, guides, sample programs, and clear documentation. In addition to the examples and 
documentation provided by the library presented as a Snap! project, we provide an interactive 
web-based guide [eCraft2Learn, 2020b]. Within the guide are instances of Snap! that enable 
readers to explore the blocks and examples on the same page as they are reading the guide. The 
guide by default also contains sections describing the underlying ideas, history, project ideas, links 
to videos and further information, and societal impacts. For students who are focused on 
programming these can easily be hidden. 

Current Status and Future Developments 

This paper reports on the design, implementation, and motivations behind our deep learning 
programming library and its associated learning resources. At the time of this writing we have 
tested this with only two high school students and two university students. We learned that unless 
the students understand the larger context and challenges of machine learning they are mystified 
why the computer can’t more easily and accurately figure out, for example, square roots. Or even 
why one would need to train it since “it already knows how to compute square roots”. Toy examples 
can be pedagogically valuable but only if presented as learning exercises and not as example of 
serious machine learning. 

We have plans to test our library and learning resources with non-computer science university 
students in at least two classes. Given how well students do using Snap! libraries for speech 
synthesis and recognition, using pre-trained neural nets, and word embeddings, we are optimistic 
students will master our deep learning library. 

The source code, libraries, guides, sample projects, and additional documentation are all freely 
available online [eCraft2Learn, 2020a]. 
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Currently our library has only been thoroughly tested in Chrome on personal computers. We have 
yet to succeed in getting it to run reliably on tablets or smartphones. 

Ideally high-level building blocks should support not only construction but “deconstruction”, i.e. 
transparency in how they function. Users ideally should be able to open up our blocks to see how 
they work and modify them. While we see that is as very valuable it is very challenging in this case 
and beyond the scope of this project. But [Jatzlau et al 2019] demonstrate this is possible in some 
cases. 

There are many technical enhancements we are considering. All of the models that can be created 
now are a sequence of fully connected layers. Convolutional layers are not yet supported; nor are 
recurrent networks and reinforcement learning. The ultimate challenge is to support all the 
functionality in TensorFlow.js in a manner that is accessible to people who are not expert users of 
some textual programming language such as Python or JavaScript. 
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